Abstract

The prevalence of infections associated with multi-drug resistant (MDR) Acinetobacter baumannii is increasing worldwide. Therefore, the introduction of effective vaccines against this bacterium seems necessary. AbOmpA and DcaP-like protein were selected as promising and putative immunogenic candidates based on previous in silico studies. Three formulations including AbOmpA, DcaP-like protein, and AbOmpA+DcaP-like protein were injected into C57BL/6 mice three times with Alum adjuvant. The specific production of IgG antibodies (e.g. total IgG, IgG1 and IgG2c) and cytokines (e.g. IL-4, IL-6, and IL-17A), were evaluated. LD50% of MDR A. baumannii ST2Pas was measured using Probit's method. After the challenge with bacteria, a decrease in bacterial loads (DLs) in the lung and spleen of mice was measured. Then serum bactericidal assay was performed to determine the function of antibodies on day 42. In addition, histopathological examinations of the spleen and lung, the number of macrophage and neutrophil, as well as the rate of lymphocyte infiltration were assessed. The highest level of total IgG was reported in the group immunized with DcaP-like protein on day 42. The survival rate of mice was 80% in the AbOmpA immunized group and 100% for the rest of two groups. DLs in the spleen of mice immunized with AbOmpA, DcaP-like protein, and combination form were 3.5, 3, and 3.4 Log10 (CFU/g), respectively. While in the lung, the DLs were 7.5 Log10 (CFU/g) for the AbOmpA group and 5 for the rest of two groups. The levels of IL-6, IL-4, and IL-17A were significantly decreased in all immunized groups after the bacterial challenge (except for IL-17A in the group of AbOmpA). The bactericidal effect of antibodies against DcaP-like protein was more effective. No histopathological damage was observed in the combination immunized group. The DcaP-like protein was more effective in neutrophil and macrophage deployment and decreased lymphocyte infiltration. The results of immunization with AbOmpA+DcaP-like protein induced a protective reaction against the sepsis infection of MDR A. baumannii. It seems that in the future, these proteins can be considered as promising components in the development of the A. baumannii vaccine.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call