Abstract

BackgroundVarious promising procedures have been used to improve the potency of DNA vaccines for the treatment of human papillomavirus type 16 (HPV16) infections. Interleukin-12 (IL12) is a powerful adjuvant that can contribute to T cell-mediated protection against many pathogens, specifically viruses. Considering the important role of T cell-mediated immunity in tumor clearance, the induction of these responses can help control the progression of tumors in animal models. We have demonstrated that the co-administration of codon-optimized E7 (uE7) gene of HPV16 with interleukin-12 is effective in the development of antitumor responses. ObjectivesThe present study examined the co-administration of codon-optimized HPV16 E7 gene with murine interleukin-12 gene (mIL-12) as a vaccine adjuvant in tumor mice model. Materials and methodsC57BL/6 mice were studied for tumor progression after injection of recombinant DNA vaccines. Lactate dehydrogenase (LDH) and IFN-γ were measured to evaluate the activity of cytotoxic T lymphocytes (CTLs). Measurements of tumor volume and MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay were used for assessment of therapeutic antitumor effects of the vaccines. ResultsResults showed that DNA vaccines, specifically codon-optimized E7/murine interleukin-12 (mIL-12), elicited significant differences in levels of IFN-γ and cytotoxic T lymphocyte (CTLs) responses compared to control groups. Furthermore, higher antitumor response and lower tumor size in the vaccine group was significantly evident compared to control group. ConclusionThe co-administration of codon-optimized HPV16 E7 gene with IL12 significantly enhances the DNA vaccine potency against HPV16-associated cervical cancer.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.