Abstract

The complement component 6 (C6) gene is a component of the membrane attack complex (MAC), which causes rapid lytic destruction of bacteria. MicroRNAs (miRNAs) are small noncoding RNAs that regulate gene stability, including that of immune genes. However, current research on the function of C6 and its regulation by miRNAs is lacking. In the present study, we identified and characterized C6 and a novel miRNA, miR-727 (designated CsC6 and Cse-miR-727, respectively), of the half-smooth tongue sole (Cynoglossus semilaevis) that responded to infection with Vibrio anguillarum, a Gram-negative pathogen of marine fish. The full-length cDNA of CsC6 contained a 256 bp 5′ untranslated region (5′-UTR), a 2820 bp open reading frame (ORF) encoding 939 amino acids, and a 205 bp 3′-UTR. SMART analysis showed that CsC6 contains typical C6 domains, including three TSP1 domains, one LDLa domain, one MACPF domain, two CCP domains and two FIMAC domains. CsC6 and Cse-miR-727 are widely expressed in the 13 tissues of half-smooth tongue sole, and their expression in immune tissues is significantly changed after V. anguillarum infection, generally showing an inverse trend. We confirmed that CsC6 was the target gene of Cse-miR-727 using the dual luciferase reporter assay and that Cse-miR-727 regulated CsC6 at the protein level using quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting. The hepatic expression levels of not only the MAC components C7, C8α, C8β, C8γ and C9 but also the MAPKs, NF-κβ, AP-1, IL1β, IL6 and TNFα, which are involved in many signaling pathways, changed significantly in half-smooth tongue sole following stimulation with the Cse-miR-727 agomir and inhibitor. This evidence suggested that CsC6 could be mediated by Cse-miR-727 to affect MAC assembly and immune signaling pathways in half-smooth tongue soles. To our best knowledge, this study is the first to investigate the regulatory mechanism and immune response of complement genes mediated by miRNAs in fish.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.