Abstract
Interferon-induced protein 35 kDa (IFP35) has been demonstrated to play important roles in antiviral defense, inflammatory response and cancer progression. However, its precise function in teleost fish remains to be elucidated. Herein, we functionally characterized the rock bream (Oplegnathus fasciatus) IFP35 (OfIFP35) to understand its expression pattern, subcellular localization, antiviral activity, and regulation of downstream genes. OfIFP35 consists of an 1107 bp open reading frame encoding 368 amino acids, including two N-myc-interactor (Nmi)/IFP35 domains (NIDs). The predicted molecular weight of OfIFP35 was 42 kDa, with a theoretical isoelectric point (pI) of 5.10. Evolutionary conservation of IFP35 was analyzed using multiple, pairwise alignments and phylogenetic tree analysis. OfIFP35 in rock bream was found to be highest expressed in the gills. Immune challenges with iridovirus, polyinosinic:polycytidylic acid, lipopolysaccharide, and live bacteria (Streptococcus iniae and Edwardsiella tarda) significantly upregulated its mRNA expression in gill and liver tissues of the rock bream. GFP-tagged OfIFP35 was localized in the cytoplasm of FHM cells, and its overexpression significantly suppressed VHSV transcription in vitro. Moreover, the analysis of downstream gene expression revealed that OfIFP35 could activate the type I interferon pathway. Collectively, these findings indicate that OfIFP35 is important for the immune system of rock bream as it promotes defense responses during viral infections.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.