Abstract

Pseudomonas plecoglossicida is a well-known pathogen of viscera granulomas disease in fish, which has led to severe economic losses. In our previous study, L321_RS13075 was predicted to be a key virulence gene of P. plecoglossicida during the host-pathogen interaction with Epinephelus coioides. To investigate the role of L321_RS13075 in the regulation of virulence in P. plecoglossicida, a L321_RS13075 knock-down strain was constructed. And a significant reduction in the ability of colonization, intracellular survival, motility, biofilm formation, and adhesion was detected in the L321_RS13075 knock-down strain. Compared with the wild-type strain, the silence of L321_RS13075 in P. plecoglossicida resulted in a significant change in the transcriptome of infected Epinephelus coioides (E. coioides). Results of COG and GO analysis on E. coioides showed that genes related to immune responses and inorganic ion transport were significantly affected by L321_RS13075 of P. plecoglossicida. Meanwhile, the interactions of the genes related to immune responses and inorganic ion transport were predicted, and the important hub genes were identified. Taken together, the results indicated that L321_RS13075 was a virulent gene of P. plecoglossicida, which significantly affected the immune responses and inorganic ion transport in E. coioides.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.