Abstract

Summer mortality of some bivalve species is often associated with the change of environmental temperature. This study compares the response of immunological parameters to temperature change in three marine bivalves: Pacific oyster Crassostrea gigas, Mediterranean mussel Mytilus galloprovincialis and mud cockle Katelysia rhytiphora. Each species was exposed to three temperatures, 15 °C, 20 °C and 25 °C for 14 days. The total haemocyte count (THC), phagocytosis, reactive oxygen species (ROS) and the activity of antioxidant enzymes such as superoxide dismutase (SOD) and catalase (CAT) were used as indicators to measure the response of each species to different temperatures. The highest temperature (25 °C) significantly increased the THC and phagocysis of haemocytes in all species. The SOD and CAT activities in the haemocytes of M. galloprovincialis and K. rhytiphora rapidly increased with temperature elevation, concomitantly with the increase of ROS ions. In contrast, the increases of ROS and SOD in C. gigas only occurred from 20 °C to 25 °C, suggesting that this intertidal species is more adaptive to different temperature levels. This study indicates that the activities of antioxidant enzymes can reflect the immune response of marine bivalves to thermal stress. Intertidal species such as Pacific oysters have a greater tolerance to thermal stress than subtidal species (e.g. Mediterranean mussel) and demersal species buried in sand (e.g. cockle).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.