Abstract

Rotaviruses cause severe diarrhea in infants and young children, leading to significant morbidity and mortality. Despite implementation of current rotavirus vaccines, severe diarrhea caused by rotaviruses still claims ∼200,000 lives of children with great economic loss worldwide each year. Thus, new prevention strategies with high efficacy are highly demanded. Recently, we have developed a polyvalent protein nanoparticle derived from norovirus VP1, the S particle, and applied it to display rotavirus neutralizing antigen VP8* as a vaccine candidate (S-VP8*) against rotavirus, which showed promise as a vaccine based on mouse immunization and in vitro neutralization studies. Here we further evaluated this S-VP8* nanoparticle vaccine in a mouse rotavirus challenge model. S-VP8* vaccines containing the murine rotavirus (EDIM strain) VP8* antigens (S-mVP8*) were constructed and immunized mice, resulting in high titers of anti-EDIM VP8* IgG. The S-mVP8* nanoparticle vaccine protected immunized mice against challenge of the homologous murine EDIM rotavirus at a high efficacy of 97% based on virus shedding reduction in stools compared with unimmunized controls. Our study further supports the polyvalent S-VP8* nanoparticles as a promising vaccine candidate against rotavirus and warrants further development.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.