Abstract

BackgroundToxoplasma gondii is an obligate intracellular parasite that can infect almost all warm-blooded animals. T. gondii profilin (TgPF) plays a crucial role in parasite motility and host cell invasion, and has shown promise against toxoplasmosis. DNA vaccine was considered to elicit effective humoral and cell-mediated immunity against T. gondii infection. The objective of the present study was to evaluate the immunogenicity of TgPF in mice using a DNA vaccination strategy.MethodsA DNA vaccine (pVAX-PF) encoding TgPF gene was constructed and then was intramuscularly injected into mice with and without a plasmid encoding IL-15 (pVAX-IL-15). The immune responses in immunized Kunming mice including lymphocyte proliferation, levels of cytokines, antibody titers and T lymphocyte subclasses were analyzed. The protective efficacy against chronic T. gondii infection was observed at 4 weeks post-infection with the cyst-forming PRU strain of T. gondii (Genotype II).ResultsEitherpVAX-PF with or without pVAX-IL-15 could elicit higher level of IgG and IgG2a antibodies and produce strong cellular immune responses in the immunized mice. The brain cyst numbers in mice immunized with pVAX-PF + pVAX-IL-15 (1843 ± 215.7) and pVAX-PF (1897 ± 337.8) were reduced 40.82% and 39.08%, respectively, compared to that in mice received nothing (3114 ± 168.8), and the differences were statistically significant (P < 0.0001). However, the T. gondii cyst numbers in mice immunized with pVAX-PF + pVAX-IL-15 were not statistically significantly different compared to that in mice immunized with pVAX-PF alone [t(10) = 0.33, P > 0.05].ConclusionsThe present study indicated that TgPF could be a promising vaccine candidate against chronic toxoplasmosis, which can be further used to develop multi-epitope vaccine formulations in food-producing animals against T. gondii infection.

Highlights

  • Toxoplasma gondii is an obligate intracellular parasite that can infect almost all warm-blooded animals

  • Gao et al BMC Infectious Diseases (2018) 18:117 (MIC), dense granule antigens (GRA) and some other proteins playing important roles in the life cycle of T. gondii have been evaluated against T. gondii infection

  • The complete open reading frame (ORF) of T. gondii profilin (TgPF) gene was amplified by reverse transcription-polymerase chain reaction (RT-PCR) using a pair of specific primers, designed according to the corresponding sequence of the ME49 strain (ToxoDB: TGME49_293690), in which the Kpn I and EcoR I restriction sites were introduced and underlined

Read more

Summary

Introduction

Toxoplasma gondii is an obligate intracellular parasite that can infect almost all warm-blooded animals. T. gondii profilin (TgPF) plays a crucial role in parasite motility and host cell invasion, and has shown promise against toxoplasmosis. DNA vaccine was considered to elicit effective humoral and cell-mediated immunity against T. gondii infection. DNA-based vaccines were considered to elicit effective humoral and cell-mediated immunity against T. gondii invasion in animal models, which have been used in many previous studies [11,12,13]. T. gondii profilin (TgPF), one of the ligands of both TLR11 and 12, is essential for the parasite gliding motility, host cell invasion and egress from host cells in mice [17, 19]. Immunization of C57BL/6 mice with TgPF encapsulated in oligomannose-coated liposomes induces protective immunity against infection with T. gondii tachyzoites (PLK strain) [20]

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.