Abstract

Allergen isoforms can differ in their IgE and T cell recognition patterns, and thus might have an impact on the selection of candidates for molecule-based diagnostic and therapeutic approaches. The present study aimed at the identification and characterization of isoforms of Art v 1, the mugwort pollen major allergen. In addition, single Art v 1 domains were physicochemically and immunologically characterized. For this purpose, the Art v 1 cDNA was radiolabeled and used to screen a mugwort pollen cDNA library. Positive clones were sequenced and used for the production of recombinant proteins in Escherichia coli using the pHIS-Parallel2 vector. Protein purification was performed by affinity- and ion exchange chromatography. Antibody binding to the recombinant proteins was determined by immunoblot, ELISA, cross-inhibition experiments, and mediator release assays. We could identify 7 Art v 1 isoforms differing in 1–6 amino acid residues. Interestingly, all amino acid variations were restricted to the proline domain carrying the molecule's post-translational modifications. No significant difference in IgG or IgE reactivity could be observed between Art v 1 isoforms and the defensin domain produced in E. coli. When expressed in E. coli, the proline domain was not recognized by Art v 1-specific antibodies. Our results demonstrated that the relevant IgE epitopes of Art v 1 are located on the defensin domain and suggest the involvement of carbohydrates in the allergenicity of natural Art v 1. Plant-based expression systems could help to reveal possibly different glycosylation patterns and IgE binding properties of Art v 1 isoforms. These findings have direct implications on the development of novel tools for mugwort pollen allergy diagnosis and therapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.