Abstract

BackgroundEvidence suggests that cytokine imbalances may be at the root of deficits that occur in numerous neurodevelopmental disorders, including schizophrenia and autism spectrum disorder. Notably, while clinical studies have demonstrated maternal cytokine imbalances with alcohol consumption during pregnancy—and data from animal models have identified immune disturbances in alcohol-exposed offspring—to date, immune alterations in alcohol-exposed children have not been explored. Thus, here we hypothesized that perturbations in the immune environment as a result of prenatal alcohol exposure will program the developing immune system, and result in immune dysfunction into childhood. Due to the important role of cytokines in brain development/function, we further hypothesized that child immune profiles might be associated with their neurodevelopmental status.MethodsAs part of a longitudinal study in Ukraine, children of mothers reporting low/no alcohol consumption or moderate-to-heavy alcohol consumption during pregnancy were enrolled in the study and received neurodevelopmental assessments. Group stratification was based on maternal alcohol consumption and child neurodevelopmental status resulting in the following groups: A/TD, alcohol-consuming mother, typically developing child; A/ND, alcohol-consuming mother, neurodevelopmental delay in the child; C/TD, control mother (low/no alcohol consumption), typically development child; and C/ND, control mother, neurodevelopmental delay in the child. Forty cytokines/chemokines were measured in plasma and data were analyzed using regression and constrained principle component analysis.ResultsAnalyses revealed differential cytokine network activity associated with both prenatal alcohol exposure and neurodevelopmental status. Specifically, alcohol-exposed children showed activation of a cytokine network including eotaxin-3, eotaxin, and bFGF, irrespective of neurodevelopmental status. However, another cytokine network was differentially activated based on neurodevelopmental outcome: A/TD showed activation of MIP-1β, MDC, and MCP-4, and inhibition of CRP and PlGF, with opposing pattern of activation/inhibition detected in the A/ND group. By contrast, in the absence of alcohol-exposure, activation of a network including IL-2, TNF-β, IL-10, and IL-15 was associated with neurodevelopmental delay.ConclusionsTaken together, this comprehensive assessment of immune markers allowed for the identification of unique immune milieus that are associated with alcohol exposure as well as both alcohol-related and alcohol-independent neurodevelopmental delay. These findings are a critical step towards establishing unique immune biomarkers for alcohol-related and alcohol-independent neurodevelopmental delay.

Highlights

  • Evidence suggests that cytokine imbalances may be at the root of deficits that occur in numerous neurodevelopmental disorders, including schizophrenia and autism spectrum disorder

  • Bodnar et al Journal of Neuroinflammation (2020) 17:39 (Continued from previous page). Taken together, this comprehensive assessment of immune markers allowed for the identification of unique immune milieus that are associated with alcohol exposure as well as both alcohol-related and alcoholindependent neurodevelopmental delay

  • Maternal immune profiles could be linked to child neurodevelopmental status, with differential activation/inhibition of cytokine networks in the context of alcohol-related neurodevelopmental delay compared to typical development

Read more

Summary

Introduction

Evidence suggests that cytokine imbalances may be at the root of deficits that occur in numerous neurodevelopmental disorders, including schizophrenia and autism spectrum disorder. Due to the important role of cytokines in brain development/function, we further hypothesized that child immune profiles might be associated with their neurodevelopmental status. Accumulating evidence suggests that cytokine imbalances, both peripherally and centrally, may be at the root of many brain-related changes that occur in neurodevelopmental disorders [6] due to the key role of cytokines in brain development and function [7]. Alcohol consumption during pregnancy can be considered an environmental exposure or insult that results in maternal immune dysregulation, with longlasting consequences for offspring immune function and brain development

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.