Abstract

Abstract The immunotherapy revolution has spurred the development of many new drugs and drug regimens for patient treatment. A key challenge is to identify the factors that drive patient toxicities and responses to treatment, with a particularly acute need for predictive biomarkers that can discriminate patients destined to respond and fail treatment. Technologies to interrogate immune cells are now readily available, but important gaps remain in their application, which limit the full realization of the promise of precision oncology. High parameter flow cytometry is a gold-standard but is limited by difficulty of panel design and lack of standardization. We present Color Wheel, a panel design tool, which builds optimized antibody panels based on the user’s instrument. These optimized panels have been manufactured in a dried, ready to use format to drive workflow and assay standardization. Initial results demonstrate excellent concordance between the dried and liquid versions of the high parameter multicolor panel(s). Molecular cytometry represents an exciting new approach to high dimensional immune analysis because it can measure at least 102 proteins and 400 mRNA targets simultaneously per cell. An important application gap for this technology is lack of data indicating the sequencing depth needed for adequate resolution. Here, we present results from a molecular cytometry experiment sequenced deeply, and then bioinformatically sub-sampled at different levels to identify the minimum level of sequencing needed for clear identification of cells, which can serve as a reference guide for users to save time and cost in their experiments. We also present preliminary data generated using dried version of molecular cytometry panel(s).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call