Abstract

Emerging evidence suggests the significant role of inflammation and oxidative stress as main contributors to the neuroprogression that is observed in major depressive disorder (MDD), where patients show increased inflammatory and oxidative stress biomarkers. The process of neuroprogression includes stage-related neurodegeneration, cell death, reduced neurogenesis, reduced neuronal plasticity and increased autoimmune responses. Oxidative stress is a consequence of the biological imbalance between Reactive Oxygen Species (ROS) and antioxidants, leading to the alteration of biomolecules and the loss of control of the intracellular redox-related signaling pathways. ROS serve as crucial secondary messengers in signal transduction and significantly affect inflammatory pathways by activating NF-κB and MAPK family stress kinases. When present in excess, ROS inflict damage, affecting cellular constituents with the formation of pro-inflammatory molecules, such as malondialdehyde, 4-Hydroxynonenal, neoepitopes and damage-associated molecular patterns promoting immune response, and ultimately leading to cell death. The failure of cells to adapt to the changes in redox homeostasis and the subsequent cell death, together with the damage caused by inflammatory mediators, have been considered as major causes of neuroprogression and hence MDD. Both an activated immune-inflammatory system and increased oxidative stress act synergistically, complicating our understanding of the pathogenesis of depression. The cascade of antioxidative and inflammatory events is orchestrated by several transcription factors, with Nrf2 and NF-κB having particular relevance to MDD. This review focuses on potential molecular mechanisms through which impaired redox homeostasis and neuroinflammation can affect the neuronal environment and contribute to depression This article is protected by copyright. All rights reserved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.