Abstract

Keeping honeybees healthy is essential, as bees are not only important for honey production but also cross-pollination of agricultural and horticultural crops; therefore, bees have a significant economic impact worldwide. Recently, the lethal disease, the American foulbrood (AFB), caused great losses of honeybee and decline of global apiculture. Recent studies have focused on using natural insect-derived antibiotics to overcome recently emerged AFB-resistance to conventional antibiotics. In support of these studies, here we investigate the possibility of producing bee-derived anti-AFB antibiotics from an indigenous honeybee, Apis mellifera jemenitica. The immune responses of the third instar stage were first induced against the standards Micrococcus luteus and Escherichia coli compared with the indigenous Paenibacillus larvae (ksuPL5). Data indicated a strong immune response against M. luteus, E. coli and P. larvae 24 h post-P. larvae-injection as revealed by the detection of lysozyme-like, cecropin-like and prophenoloxidase (PO) activities in the plasma of P. larvae-injected third instars. Nodulation activity against injected P. larvae as early as 4 h and peaking 48 h post-P. larvae injection were observed. Potentially active anti-P. larvae immune peptide fractions purified by high-performance liquid chromatography (HPLC) showed significant in vivo therapeutic effects on P. larvae-infected first instars. Mass spectrophotometric analysis and Orbitrap measurements of P. larvae-injected plasma indicated the expression of PO (Mr: 80 kDa), beta-1,3-glucan-binding protein (Mr: 52 kDa) and serine protease 44 isoform X1 (Mr: 46 kDa). This suggests that one or all of these immune peptides contribute to significant survivorship of P. larvae-infected broods, and could be a valuable clue in the search for honeybee-derived anti-AFB natural therapeutic agents. Further molecular characterization and description of the functional roles of these predicted antimicrobial peptides from both broods and adult honeybee may enrich the arsenal of insect-derived antibiotics of therapeutic purposes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.