Abstract

The cestode Echinococcus multilocularis infection, a serious health problem worldwide, causes alveolar echinococcosis (AE), a tumor-like disease predominantly located in the liver and able to spread to any organs. Until now, there have been few studies that explore how T-cell exhaustion contributes to the parasite's escape from immune attack and how it might be reversed. In this study, we found that liver T-cell immunoreceptor with immunoglobulin and immunoreceptor tyrosine-based inhibitory motif domain (TIGIT) expression was significantly enhanced and positively correlated with lesion activity in AE patients. High TIGIT expression in both liver-infiltrating and blood T cells was associated with their functional exhaustion, and its ligand CD155 was highly expressed by hepatocytes surrounding the infiltrating lymphocytes. In co-culture experiments using human blood T cells and hepatic cell line HL-7702, CD155 induced functional impairment of TIGIT+ T cells, and in vitro blockade with TIGIT antibody restored the function of AE patients' T cells. Similar TIGIT-related functional exhaustion of hepatic T cells and an abundant CD155 expression on hepatocytes were observed in E. multilocularis-infected mice. Importantly, in vivo blocking TIGIT prevented T-cell exhaustion and inhibited disease progression in E. multilocularis-infected mice. Mechanistically, CD4+ T cells were totally and CD8+ T cells partially required for anti-TIGIT-induced regression of parasite growth in mice. This study demonstrates that E. multilocularis can induce T-cell exhaustion through inhibitory receptor TIGIT, and that blocking this checkpoint may reverse the functional impairment of T cells and represent a possible approach to immunotherapy against AE.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.