Abstract

BackgroundCarcinogenesis is driven by interactions between genetic mutations and the local tumor microenvironment. Recent research has identified hundreds of cancer driver genes; however, these studies often include a mixture of different molecular subtypes and ecological niches and ignore the impact of the immune system.ResultsIn this study, we compare the landscape of driver genes in tumors that escaped the immune system (escape +) versus those that did not (escape −). We analyze 9896 primary tumors from The Cancer Genome Atlas using the ratio of non-synonymous to synonymous mutations (dN/dS) and find 85 driver genes, including 27 and 16 novel genes, in escape − and escape + tumors, respectively. The dN/dS of driver genes in immune escaped tumors is significantly lower and closer to neutrality than in non-escaped tumors, suggesting selection buffering in driver genes fueled by immune escape. Additionally, we find that immune evasion leads to more mutated sites, a diverse array of mutational signatures and is linked to tumor prognosis.ConclusionsOur findings highlight the need for improved patient stratification to identify new therapeutic targets for cancer treatment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.