Abstract
We evaluated the association of disease outcome with T cell immune-related characteristics and T cell receptor (TCR) repertoire in malignant ascites from patients with high-grade epithelial ovarian cancer. Ascitic fluid samples were collected from 47 high-grade epithelial ovarian cancer patients and analyzed using flow cytometry and TCR sequencing to characterize the complementarity determining region 3 TCR β-chain. TCR functions were analyzed using the McPAS-TCR and VDJ databases. TCR clustering was implemented using Grouping of Lymphocyte Interactions by Paratope Hotspots software. Patients with poor prognosis had ascites characterized by an increased ratio of CD8+ T cells to regulatory T cells, which correlated with an increased productive frequency of the top 100 clones and decreased productive entropy. TCRs enriched in patients with an excellent or good prognosis were more likely to recognize cancer antigens and contained more TCR reads predicted to recognize epithelial ovarian cancer antigens. In addition, a TCR motif that binds the TP53 neoantigen was identified, and this motif was enriched in patients with an excellent or good prognosis. Ascitic fluid in high-grade epithelial ovarian cancer patients with an excellent or good prognosis is enriched with TCRs that may recognize ovarian cancer-specific neoantigens, including mutated TP53 and TEAD1. These results suggest that an effective antigen-specific immune response in ascites is vital for a good outcome in high-grade epithelial ovarian cancer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.