Abstract

To investigate whether stimulation with lipopolysaccharide (LPS) alters cytokine production by splenocytes in mice and whether it changes the T-helper 1 (Th1)/Th2 balance. The role of nitric oxide in such immunologic changes was also explored using mice with genetic lack of inducible nitric oxide synthase (iNOS). : Prospective animal study with concurrent controls. University research laboratory. iNOS knockout mice and wild-type littermates. iNOS knockout mice or wild-type mice were injected with LPS or saline with or without anti-interleukin (IL)-6 antibody, and survival was monitored for 7 days. At 24 and 48 hrs after administration, blood samples and splenocytes were obtained to examine immunologic variables. Cell surface markers and cytokine expression of splenocytes were used to characterize the Th1/Th2 balance and were measured by flow cytometry. At 48 hrs after LPS administration, the Th1/Th2 balance shifted toward Th2 predominance in wild-type mice, irrespective of the IL-6 level, whereas it showed Th1 predominance in iNOS knockout mice, and the increase of IL-6 and IL-10 in response to LPS persisted in these animals. After LPS administration, the mortality rate was significantly higher in iNOS knockout mice than in wild-type mice, irrespective of the IL-6 level. These findings suggest that nitric oxide produced by iNOS during endotoxemia may be involved in down-regulation of Th1 cytokines and up-regulation of Th2 cytokines, whereas IL-6 has no such role. The increased lethality of LPS in iNOS knockout mice suggests that nitric oxide may be protective against proinflammatory cytokine-induced damage. Nitric oxide excess may increase susceptibility to nosocomial infections, so-called immunoparalysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.