Abstract

Adoptive transfer of T cells genetically engineered to express chimeric antigen receptors (CAR) has demonstrated striking efficacy for the treatment of several hematological malignancies, including B-cell lymphoma, leukemia, and multiple myeloma. However, many patients still do not respond to this therapy or eventually relapse after an initial remission. In most solid tumors for which CAR T-cell therapy has been tested, efficacy has been very limited. In this context, it is of paramount importance to understand the mechanisms of tumor resistance to CAR T cells. Possible factors contributing to such resistance have been identified, including inherent CAR T-cell dysfunction, the presence of an immunosuppressive tumor microenvironment, and tumor-intrinsic factors. To control tumor growth, CAR T cells have to migrate actively enabling a productive conjugate with their targets. To date, many cells and factors contained within the tumor microenvironment have been reported to negatively control the migration of T cells and their ability to reach cancer cells. Recent evidence suggests that additional determinants, such as immune checkpoint proteins, cellular metabolism, and adhesion molecules, may modulate the motility of CAR T cells in tumors. Here, we review the potential impact of these determinants on CAR T-cell motility, and we discuss possible strategies to restore intratumoral T-cell migration with a special emphasis on approaches targeting these determinants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.