Abstract

PurposeThe causes and pathogenetic mechanisms underlying abdominal aortic aneurysms (AAAs) and pseudoaneurysms are not fully understood. We hypothesized that inhibiting programmed death-1 (PD-1) can decrease AAA and pseudoaneurysm formation in mouse and rat models. MethodsHuman AAA samples were examined in conjunction with an adventitial calcium chloride (CaCl2) application mouse model and an aortic patch angioplasty rat model. Single-dose PD-1 antibody (4 mg/kg) or BMS-1 (PD-1 inhibitor-1) (1 mg/kg) was administered by intraperitoneal (IP) or intraluminal injection. In the intramural injection group, PD-1 antibody was injected after CaCl2 incubation. The rats were divided into three groups: (1) the control group was only decellularized without other special treatment, (2) the PD-1 antibody-coated patch group, and (3) the BMS-1 coated patch group. Patches implanted in the rat abdominal aorta were harvested on day 14 after implantation and analyzed. ResultsImmunohistochemical analysis showed PD-1–positive cells, PD-1 and CD3, PD-1 and CD68, and PD-1 and α-actin co-expressed in the human AAA samples. Intraperitoneal (IP) injection or intraluminal injection of PD-1antibody/BMS-1 significantly inhibited AAA progression. PD-1 antibody and BMS-1 were each successfully conjugated to decellularized rat thoracic artery patches, respectively, by hyaluronic acid. Patches coated with either humanized PD-1 antibody or BMS-1 can also inhibit pseudoaneurysm progression and inflammatory cell infiltration. ConclusionPD-1 pathway inhibition may be a promising therapeutic strategy for inhibiting AAA and pseudoaneurysm progression.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.