Abstract

Background: Well-differentiated neuroendocrine neoplasms (NENs) are usually controlled by antiproliferative, local ablative and/or radionuclide therapies, whereas poorly differentiated NENs generally require cytotoxic chemotherapy. However, treatment options for patients with advanced/metastatic high-grade NENs remain limited. Method: Review of the literature and international congress abstracts on the efficacy and safety of immunotherapy by checkpoint inhibition in advanced/metastatic NENs. Results: Evidence points to an important role of immune phenomena in the pathogenesis and treatment of neuroendocrine tumors (NETs). Programmed cell death 1 (PD-1) protein and its ligand are mainly expressed in poorly differentiated NENs. Microsatellite instability and high mutational load are more pronounced in high-grade NENs and may predict response to immunotherapy. Clinical experience of immune checkpoint blockade mainly exists for Merkel cell carcinoma, a high-grade cutaneous neuroendocrine carcinoma (NEC), which has led to approval of the anti-PD-1 antibody avelumab. In addition, there is anecdotal evidence for the efficacy of checkpoint inhibitors in large-cell lung NECs, ovarian NECs and others, including gastroenteropancreatic NENs. Currently, phase II studies investigate PDR001, pembrolizumab, combined durvalumab and tremelimumab, and avelumab treatment in patients with advanced/metastatic NENs. Conclusion: Immune checkpoint inhibitors are a promising therapeutic option, especially in progressive NECs or high-grade NETs with high tumor burden, microsatellite instability, and/or mutational load.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call