Abstract
BackgroundAlthough there are a growing number of studies on evaluating lymphocyte subset counts as prognostic factors for COVID-19 disease severity, the lymphocyte subsets’ analyses of both IgM and IgG responders and non-responders during the periods after onset of symptoms, have not been conducted yet. So, this study aimed to evaluate immune cell profiling of COVID-19 patients with and without antibody responses.MethodsIn this cross-sectional study, the levels of peripheral lymphocyte subsets were measured using flow cytometry in 53 patients with positive SARS-CoV-2 RT-PCR, for whom antibody testing of COVID-19 was performed.ResultsThe white blood cell, neutrophil, and lymphocyte counts consistently decreased in the IgM and IgG non-responder group, while the differences in the median value between the two study groups were found to be statistically significant only in terms of neutrophil counts (P = 0.024 for IgM response and p-value = 0.046 for IgG response, respectively). Moreover, the level of neutrophil-to-lymphocyte ratio was observed to be significantly lower in the IgM or IgG non-responder group compared to the IgM or IgG responder group (3.6 ± 3.1 vs. 6.3 ± 4.2; p-value = 0.021). The patients with IgM antibody response had a significantly lower CD20+ lymphocytes (11% versus 15% in the groups without IgM antibody response, p-value = 0.031), The percentages of NK cells and CD4+ T cells significantly increased in the patients with IgG antibody response compared to those without IgG antibody response (13% versus 10%, p-value = 0.028, and 41.5% versus 34%; p-value = 0.03, respectively). Moreover, the patients who produced IgM or IgG antibody had significantly higher percentages of total T lymphocytes (64% versus 54%; p-value = 0.017), CD4+ T cells (41% versus 34%; p-value = 0.038), and NK cells (13% versus 9%, p-value = 0.023) compared to the group with no serological response. No significant difference was observed in the percentage of other lymphocyte subsets, including CD8+ T cells, Treg cells, and CD19+ B cells.ConclusionOur results suggest that the total T cells, CD4+ T cells, and NK cells percentages are linked to serological response. Moreover, our findings suggested that neutrophil absolute counts and neutrophil-to-lymphocyte ratio may be valuable predictors of IgM or IgG antibody response.
Highlights
There are a growing number of studies on evaluating lymphocyte subset counts as prognostic factors for COVID-19 disease severity, the lymphocyte subsets’ analyses of both IgM and IgG responders and non-responders during the periods after onset of symptoms, have not been conducted yet
We analyzed the levels of lymphocyte subsets using flow cytometry in whole blood samples of the patients with positive SARS-CoV-2 Reverse transcription polymerase chain reaction (RT-PCR), for whom antibody testing for COVID-19 was performed
The white blood cell, and neutrophil and lymphocyte counts consistently decreased in the IgM and IgG nonresponder groups, while the differences in the median value between the two study groups was statistically significant only for neutrophil counts (p-value = 0.024 for IgM response and p-value = 0.046 for IgG response)
Summary
There are a growing number of studies on evaluating lymphocyte subset counts as prognostic factors for COVID-19 disease severity, the lymphocyte subsets’ analyses of both IgM and IgG responders and non-responders during the periods after onset of symptoms, have not been conducted yet. This study aimed to evaluate immune cell profiling of COVID-19 patients with and without antibody responses. The number of reports on different aspects of COVID-19 is currently increasing, the manner of immune cell subsets changed during COVID-19 has remained principally unclear yet [1]. Several studies have previously investigated the antibody responses to N protein or S glycoprotein in COVID-19 patients [2,3,4,5,6]. It has been reported that the detection of antibodies against the N protein of SARS-CoV-2 is more sensitive than that of the S glycoprotein antibodies, at the early stage of this infection [7]. Regulatory T (Treg) lymphocytes play a vital role in suppressing excessive immune responses to pathogens; the molecular mechanisms involved in the regulation of forkhead box P3 (FOXP3) expression and antigen-specific response of Treg cells in COVID-19 are unclear yet [8]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.