Abstract

Abstract While immunotherapy is used clinically to treat many cancers, its translation into brain tumors remains elusive. The importance of B cells in cancer immunity has become increasingly clear, and we previously developed a B cell-based cellular vaccine (BVax) against glioblastoma (GBM) by further activating 4-1BBL+ B cells with CD40 agonism and IFNγ. BVax were characterized as professional antigen-presenting cells (APCs) that promote CD8+ T cell migration and persistence in murine tumor-bearing brains. This study seeks to understand the mechanisms underlying BVax-induced CD8+ T cell fitness in the tumor microenvironment. Initial transcriptomic analysis highlighted that Bvax express high levels of IL15Rα, indicating their potential ability to trans-present IL15. Considering IL15 trans-presentation is fundamental in T-cell memory differentiation, we used BVax to induce T cell activation in the presence of exogenous IL15. BVax were better capable of activating antigen-specific CD8+ T cells and promoting a memory phenotype when compared to other professional APCs such as dendritic cells (DCs). T cell receptor (TCR) CDR3β sequencing showed that BVax expanded a number of TCR clones in-vitro that were found in brains of CT2A tumor-bearing mice in-vivo. These BVax-activated CD8+ T cells displayed a stronger antigen recall response and unique metabolic profile compared to DC-activated CD8+ T cells as shown by metabolomic analysis of tumor-infiltrating CD8+ T cells. When comparing the anti-tumor effects of CD8+ T cells activated by various APCs, BVax with exogenous IL15 promoted CD8+ T cells that displayed the most potent cytotoxicity against GBM cells in-vitro. Collectively, this study suggests that the IL15/IL15Rα axis and interactions with CD8+ T cell are key factors of BVax therapy in promoting a robust survival benefit and long-term immunologic memory against GBM in preclinical models. Additionally, the development of T cell therapies based on B cell licensing can be a promising future approach for glioblastoma therapy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call