Abstract

An in vivo nude mouse graft model and an in vitro collagen matrix culture system were used to study interactions of immature hair follicle buds from newborn mice with clonally derived AdE1A-12S-immortalized rat whisker dermal papilla cell lines. Of the 19 available dermal papilla cell lines, four consistently supported good hair follicle development and hair growth in grafts. Seven cell lines were clearly negative in this assay, and the remaining eight cell lines yielded poor to moderate hair growth. As a correlate to in vivo extracellular matrix remodeling accompanying hair follicle development, type IV collagenase activity in the medium from cocultures of dermal papilla cells and hair follicle buds was analyzed by gelatin zymography. Hair follicle buds cultured alone secrete primarily the 92-kDa type IV procollagenase. Cocultivation of hair follicle buds with eight of the dermal papilla cell lines resulted in activation of this proenzyme and activation of the 72-kDa and 92-kDa type IV procollagenases produced by the dermal papilla cells. Seven of these eight dermal papilla cell lines support hair growth in the graft system. In the absence of dermal papilla cells, several growth factors induced activation of the 92-kDa procollagenase secreted by hair follicle buds cultured in serum-free medium: epidermal growth factor, transforming growth factor alpha, acidic fibroblast growth factor, and keratinocyte growth factor. The current working hypothesis is that a) hair follicle epithelial cells interact with dermal papilla cells in coculture by mutual induction of growth factors and cytokines that stimulate the release and activation of matrix remodeling proteases; and b) the ability of dermal papilla cells to interact with hair follicle epithelial cells in this way may be crucial for controlled dermal matrix remodelling during HF development.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call