Abstract

Recent studies show that stable expression of the human telomerase catalytic subunit, hTERT, alone can lead several types of normal human somatic cells to bypass replicative senescence and become immortal. The molecular mechanisms by which telomerase immortalizes cells are not fully understood, although a key function of telomerase is to maintain a critical length of telomeres in order to preserve the stability and integrity of the genome. Here we report that stable transfection of hTERT alone was sufficient to allow bovine capillary endothelial (BCE) cells to bypass senescence and acquire immortality. Surprisingly, telomere lengths in these stable transfectants were progressively shortened during an increasing number of population doublings (PDLs), despite high telomerase activity. The expression of the cyclin-dependent kinase inhibitors (CDKIs) p16INK4A and p21CIP1/WAF1 was concomitantly repressed, and the retinoblastoma protein (pRb) was maintained in a hyperphosphorylated state in the telomerase-expressing cells. Re-expression of p16INK4A in these cells by either treatment with a demethylating agent or by adenovirus-mediated expression reinduced a senescence-like phenotype, suggesting that the inactivation of p16INK4A was due to DNA methylation and was crucial for the immortalization process. In agreement with this finding, the expression levels of the prototypic DNA methyltransferase DNMT1 were elevated in the hTERT-positive cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.