Abstract
The effects of annexin A5 on the lateral diffusion of single-molecule lipids and single-molecule proteins were studied in an artificial lipid bilayer membrane. Annexin A5 is a member of the annexin superfamily, which binds preferentially to anionic phospholipids in a Ca2+-dependent manner. In this report, we were able to directly monitor single BODIPY 1,2-dihexadecanoyl-sn-glycero-3-phosphoethanolamine (DHPE) and ryanodine receptor type 2 (RyR2) labeled with Cy5 molecules in lipid bilayers containing phosphatidylserine (PS) by using fluorescence microscopy. The diffusion coefficients were calculated at various annexin A5 concentrations. The diffusion coefficients of BODIPY-DHPE and Cy5-RyR2 in the absence of annexin A5 were 4.81 x 10(-8) cm(2)/s and 2.13 x 10(-8) cm(2)/s, respectively. In the presence of 1 microM annexin A5, the diffusion coefficients of BODIPY-DHPE and Cy5-RyR2 were 2.2 x 10(-10) cm(2)/s and 9.5 x 10(-11) cm(2)/s, respectively. Overall, 1 microM of annexin A5 was sufficient to induce a 200-fold decrease in the lateral diffusion coefficient. Additionally, we performed electrophysiological examinations and determined that annexin A5 has little effect on the function of RyR2. This means that annexin A5 can be used to immobilize RyR2 in a lipid bilayer when imaging and analyzing RyR2.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.