Abstract
Incorporating metal nanoparticles (MNPs) into porous composites with controlled size and spatial distributions is beneficial for a broad range of applications, but it remains a synthetic challenge. Here, we present a method to immobilize a series of highly dispersed MNPs (Pd, Ir, Pt, Rh, and Ru) with controlled size (<2 nm) on hierarchically micro- and mesoporous organic cage supports. Specifically, the metal-ionic surfactant complexes serve as both metal precursors and mesopore-forming agents during self-assembly with a microporous imine cage CC3, resulting in a uniform distribution of metal precursors across the resultant supports. The functional heads on the ionic surfactants as binding sites, together with the nanoconfinement of pores, guide the nucleation and growth of MNPs and prevent their agglomeration after chemical reduction. Moreover, the as-synthesized Pd NPs exhibit remarkable activity and selectivity in the tandem reaction due to the advantages of ultrasmall particle size and improved mass diffusion facilitated by the hierarchical pores.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.