Abstract

In this report, we show an improved method for the simultaneous measurement of optical and electrical properties of single-channel proteins for analysis of the gating mechanism. Large-conductance Ca2+-activated potassium (BK) channels were isolated from porcine uterine smooth muscle and labeled with Cy5 via antibody against the N-terminal. These Cy5-labeled BK channels were incorporated into lipid bilayer membranes followed by single channel current measurements. Cy5-labeled BK channels possessed Ca2+ and voltage sensitivity. The orientation of the vesicles was determined to be outside-out. Charybdotoxin applied from the cis side blocked the channel current. For stable observations of ligand and channel binding, BK channel immobilization was also examined. The lateral diffusion coefficient of BK channels decreased over 200 fold in 1 μ annexin V while the open probability did not change. This study is a significant advancement in simultaneous measurements of ligand binding and current change at the single channel level. [DOI: 10.1380/ejssnt.2007.1]

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.