Abstract

Chiral pyridinebis(oxazoline) (pybox) ligands can be efficiently immobilized onto silica through position 4 of the pyridine ring. The crucial intermediate in this strategy is 4-chloropybox, which is prepared in good yield from chelidamic acid. 4-Chloropybox reacts with p-hydroxybenzaldehyde and p-aminophenol to give two intermediates (pybox-CHO and pybox-NH2) that allow to introduce the formyl and amino groups able to link to spacers with triethoxysilyl groups. The modified ligands and their ruthenium complexes are immobilized by grafting onto preformed silicas or, alternatively, the support is created by sol-gel synthesis using the functionalized chiral ligand as a silica monomer. In this way it is possible to create a library where the variation involves the support rather than the catalyst. The aim of this approach is to study the influence of different parameters, such as the textural properties of the support and the immobilization method, on the functionalization and catalytic performance. Some of the immobilized complexes are compared as heterogeneous catalysts in the cyclopropanation reaction of styrene with ethyl diazoacetate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call