Abstract

The preparation of biocatalysts based on immobilized trypsin is of great importance for both proteomic research and industrial applications. Here, we have developed a facile method to immobilize trypsin on hydrophobic cellulose-coated silica nanoparticles by surface adsorption. The immobilization conditions for the trypsin enzyme were optimized. The as-prepared biocatalyst was characterized by Fourier transform infrared spectroscopy, transmission electron microscopy, and elemental analysis. In comparison with free enzyme, the immobilized trypsin exhibited greater resistances against thermal inactivation and denaturants. In addition, the immobilized trypsin showed good durability for multiple recycling. The general applicability of the immobilized trypsin for proteomic studies was confirmed by enzymatic digestion of two widely used protein substrates: bovine serum albumin (BSA) and cytochrome c. The surface adsorption protocols for trypsin immobilization may provide a promising strategy for enzyme immobilization in general, with great potential for a range of applications in proteomic studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.