Abstract

Trans-catheter arterial embolization (TAE) plays an important role in treating various diseases. The available embolic agents lack X-ray visibility and do not prevent the reflux phenomenon, thus hindering their application for TAE therapy. Herein, we aim to develop a multifunctional embolic agent that combines the X-ray radiopacity with local procoagulant activity. The barium sulfate nanoparticles (BaSO4 NPs) were synthesized and loaded into the polyvinyl alcohol/chitosan (PVA/CS) to prepare the radiopaque BaSO4/PVA/CS microspheres (MS). Thereafter, thrombin was immobilized onto the BaSO4/PVA/CS MS to obtain the thrombin@BaSO4/PVA/CS MS. The prepared BaSO4/PVA/CS MS were highly spherical with diameters ranging from 100 to 300 μm. In vitro CT imaging showed increased X-ray visibility of BaSO4/PVA/CS MS with the increased content of BaSO4 NPs in the PVA/CS MS. The biocompatibility assessments demonstrated that the MS were non-cytotoxic and possessed permissible hemolysis rate. The biofunctionalized thrombin@BaSO4/PVA/CS MS showed improved hemostatic capacity and facilitated hemostasis in vitro. Additionally, in vivo study performed on a rabbit ear embolization model confirmed the excellent X-ray radiopaque stability of the BaSO4/PVA/CS MS. Moreover, both the BaSO4/PVA/CS and thrombin@BaSO4/PVA/CS MS achieved superior embolization effects with progressive ischemic necrosis on the ear tissue and induced prominent ultrastructural changes in the endothelial cells. The findings of this study suggest that the developed MS could act as a radiopaque and hemostatic embolic agent to improve the embolization efficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.