Abstract

Immobilized chitosan-Ag nanoparticles (CTS-Ag NPs) with special surface state have been synthesized successfully through immobilizing Ag NPs on the amino-enriched surface of CTS by reducing Ag (I) in situ. The antimicrobial efficiency and potency of CTS-Ag NPs against Escherichia coli and Staphylococcus aureus were studied. Our results reveal that surface-immobilized CTS-Ag NPs show better antimicrobial efficacy than several other reported monodisperse colloidal Ag NPs, because the unique surface state of our CTS-Ag NPs leads to both "contact killing" and "ion mediated killing" functions. Due to the synergetic effect of CTS and Ag NPs, the immobilized CTS-Ag NPs present a broader antimicrobial spectrum and a more effective antifungal activity against Monilia albican. In addition, CTS as an environment friendly dispersant can help to reduce the cytotoxicity of Ag NPs on higher organisms. The immobilized CTS-Ag NPs are stable and can maintain good disinfection potential after 6 months' shelf-time.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call