Abstract

The goal of the study was to show that immobilized purple bacteria could photoproduce H(2) using dark fermentation effluent (FE) as substrate. Simple pretreatment of an inexpensive glass-fiber matrix accelerated the immobilization process. Photobioreactors (PhBR) containing immobilized Rhodobacter sphaeroides GL produced 0.128 L H(2) h(-1) L(-1) of PhBR volume (0.570 L h(-1) L(-1) of matrix) for up to 3 months when continuously fed artificial media with volatile fatty acids (VFAs) or FE from potato and starch fermentations. Hydrogen production was insensitive to NH(4)(+) up to 1 mM and saturated at 8 mM lactate or 1.5% potato FE (diluted in water and supplemented with critical micronutrients). The efficiency of VFA transformation to H(2) was 50-70% of theoretical. At nonlimiting substrate concentrations in artificial media or FE, acetate was utilized before butyrate. High volumetric rates of continuous H(2) photoproduction and stability of the process are advantages of using immobilized cultures. Use of H(2) photoproduction as a polishing step in the treatment of FEs from dark fermentations increased the total amount of H(2) produced from 0.9 to 4.7 mol mol(-1) glucose equivalent in the original potato homogenate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call