Abstract
The recently discovered peptide asparaginyl ligases (PALs) from cyclotide-producing plants are efficient and versatile tools for protein and peptide engineering. Here, we report immobilization of two glycosylated PALs, butelase-1 and VyPAL2, using three different attachment methods and their applications for peptide engineering. We compared immobilization indirectly via noncovalent affinity capture using NeutrAvidin or concanavalin A agarose beads or directly via covalent coupling of free amines on the enzyme surface with the N-hydroxysuccinimide (NHS) ester attached on agarose beads. The catalytic efficiency of immobilized PALs correlated with the distance between the biocatalysts and the solid supports, and in turn, the mobility of enzymes and the accessibility of substrates. Compared to their soluble counterparts, the site separations of immobilized PALs retain higher activity after prolonged storage and confer reusability for over 100 runs with less than 10% activity loss. We also showed that the cyclization and ligation of peptides and proteins with varying shapes and sizes can be accelerated by providing higher concentration of reusable immobilized PALs. These advantages could be exploited for large-scale industrial applications and nanodevices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.