Abstract

Novel carboxyl-functionalized core-shell magnetic cellulose microspheres (MCMS) were prepared by surface modification with 1,2,3,4-butanetetracarboxylic acid (BTCA) and then applied in the immobilization of lysozyme via covalent bonding. The successful preparation of particles has been verified by transmission electron microscopy (TEM), X-ray diffraction (XRD), vibrating sample magnetometer (VSM), and Fourier-transform infrared spectroscopy (FTIR) techniques. The optimal temperature and pH of the immobilized lysozyme were shown to be respectively 40 °C and 7. The immobilized lysozyme exhibited excellent performances within wide pH and temperature ranges as well as the high storage and thermal stabilities compared to free lysozyme. The apparent kinetic characterization of immobilized lysozyme revealed that its Km value was 1.37 times higher than that of free lysozyme and that its Vmax was slightly lower. The immobilized lysozyme demonstrated an acceptable reusability and showed 51.9±2.2% of activity after six cycles. This study demonstrated the application potential of BTCA-modified MCMS as an immobilized carrier for lysozyme.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call