Abstract

Hypocrea pseudokoningii purified lipase was immobilized on hydrophobic supports (phenyl-sepharose, butyl-sepharose, octyl-sepharose, Hexyl Toyopearl, Lewatit, Purolite, Decaoctyl sepabeads) and ionic supports (Duolite, DEAE-agarose, PEI-agarose, MANAE-agarose, and Q-sepharose). The immobilization processes resulted in derivatives with excellent thermal stabilities, increasing the half-life up to 500-fold. The derivatives had excellent stability to organic solvents compared to the crude lipase. In the presence of 50% ethanol, hexyl and Decaoctyl derivatives increased by about 6- and 3.5-fold their stability to organic solvents, respectively. When tested for methanol, phenyl-sepharose derivative also increased their stability to organic solvents in approximately 2-fold. Octyl-sepharose derivative was fully stable for 48h in the presence of propanol, which showed a half-life of about 7.5h. The greater activation of the derivatives occurred using 50% cyclohexane, in which the hexyl derivative obtained an increase in the activity of 9-fold and phenyl and octyl derivatives had their activity increased by 6-fold. The lipase showed activity on different oils. Therefore, the adsorption of lipases in low ionic strength and highly hydrophobic supports is shown to be a simple and rapid tool for the immobilization of H. pseudokoningii lipase. These derivatives strongly increase the chances of this biocatalyst for industrial application.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.