Abstract

The enzymatic oxidation of Cephalosporin C (CEPHC) was catalyzed by D-aminoacid oxidase, from the red yeast Trigonopsis variabilis, immobilized on Duolite A365. The study was performed in two different three phase bioreactors, gas-liquid-solid (immobilized enzyme): the fluidized-bed batch reactor, fed continuously with oxygen and discontinuously with CEPHC, and the UF-membrane reactor continuously fed with both substrates. Only the first reactor allowed significant product yield (>70%) while the second was a very useful tool for laboratory investigation of both bioconversion kinetics and enzyme stability.Optimum reaction temperature was 15d`C for the control of CEPHC spontaneous degradation (roughly 15% in 30 h), and enzyme deactivation (half-life greater than 30 h). Immobilization improved (one order of magnitude longer half-life) enzyme resistance to mechanical stresses induced by liquid stirring and gas bubbling. Roughly 0.04g of CEPHC was adsorbed per gram of enzyme carrier. The limiting step in oxygen transfer was the gas to liquid transport. In order to attain kinetic control of the bioconversion the mildest conditions were atmospheric gas pressure and oxygen flow rate equal to 2 × 10 2NmL/s per mL of liquid phase.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.