Abstract

Oxidations represent important reactions that are ubiquitous in academia and industry. Hydrogen peroxide (H2O2) is a common source of active oxygen for oxidations. H2O2 is usually diluted in water as it is too unstable to be used in pure form. However, the presence of water can complicate reactions because biphasic mixtures with organic solvents form. Furthermore, secondary reactions with water may lead to side products. Therefore, alternative forms of H2O2, such as peroxide adducts, are an active area of research. Di(hydroperoxy)alkane adducts of phosphine oxides are one attractive solution because they are soluble in organic solvents, crystallizable, shelf-stable and active towards a variety of oxidation reactions. The only drawback is that the phosphine oxide carrier has to be removed after the reaction. In this contribution, the bifunctional ligand (EtO)3Si(CH2)2PPh2 is immobilized on a silica (SiO2) support which is subsequently end-capped with EtOSi(CH3)3. The new surface-bound di(hydroperoxy)propane adduct is then generated with the immobilized phosphine oxide as carrier. The adduct and a deuterated analog are characterized with solid-state and solution NMR spectroscopy. It has been demonstrated that substrates in organic solvents easily access the surface-bound peroxide and are oxidized quantitatively. The phosphine oxide carrier remains bound to the surface and can be removed easily by settling of the silica. Using the oxidative esterification of nonyl aldehyde it is proven that the immobilized peroxide adduct does not leach from the silica support and is active and reusable over multiple cycles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.