Abstract

The pathophysiology of osteoporosis as it relates to immobilization or disuse osteoporosis in paraplegics is briefly reviewed. The physiology of bone formation and resorption is discussed, and the influence of piezoelectric forces on bone integrity and the consequences of the loss of this effect in paraplegics is addressed. When bone is stressed, negative charges accumulate on the side from which the stress is applied and positive charges accumulate on the opposite side. Presumably the collagenous component of bone plays the major role in the generation of electrical potentials. Another mechanism important in the generation of electrical potentials is created by liquid planes streaming past solid planes. Diminished forces acting on bone, as in paraplegia, are translated into changes in the activity of bone remodeling units which can be assessed by histomorphic and histoenzymatic techniques. Other biochemical and endocrine consequences of immobilization involve increased serum calcium, decreased serum parathyroid hormone (PTH), and decreased dihydroxy-vitamin D synthesis. Urinary hydroxyproline and calcium excretion are increased, as is stool calcium. The bone loss that follows immobilization may produce an increased susceptibility to fractures involving long bones more than the spinal column, and is due more to decreased bone formation than to accelerated bone resorption. The treatment of immobilization osteoporosis primarily involves early remobilization, but other treatments, including the use of electrical fields and the administration of bisphosphonates, calcitonin, and a growth hormone are being actively investigated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.