Abstract

Candida rugosa lipase has been covalently immobilized on ferromagnetic azide polyethyleneterepthalate (Dacron) with specific activity retention of 16% for 4-nitrophenyl palmitate and 24% for hydrolysis of triolein in hexane. The immobilized enzyme was more thermal stable than the soluble one, retaining 78.8% of the activity after 1 h at 60 degrees C. Also, this immobilized derivative was stable at the storage at 4 degrees C. It has been used 5 cycles for pNPP hydrolysis without loss of activity. Soluble and immobilized Candida rugosa lipase showed a Michaelian behavior for fatty acid 4-nitrophenyl esters and different apparent K(M) values: 0.110 mM and 0.124 mM (4-nitrophenyl palmitate - C16); 0.193 mM and 0.235 mM (4-nitrophenyl laurate - C12) and 0.206 mM and 0.119 mM (4-nitrophenyl butyrate - C4), respectively. The immobilized lipase was more efficient for catalyzing the hydrolysis of 4-nitrophenyl esters with short chain length fatty acid (4-NPB - C4) than soluble enzyme. The ferromagnetic Dacron-lipase derivative was able to catalyze the synthesis of triolein from glycerol and oleic acid with 50% of conversion after 72 h at 40 degrees C.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.