Abstract

We developed a novel solidification and stabilization process using a nanoscale zerovalent iron (NZVI)-cement system for reductive immobilization of hexavalent uranium (U(VI)) in a soil–cement matrix. The NZVI suspension without cement demonstrated high removal efficiency (100% in 2 h) and fast removal kinetics (53.7 Lm−2d−1), which surpassed those of other Fe-containing minerals (i.e., green rust, mackinawite, magnetite, and pyrite). Significant removal of aqueous U(VI) was observed in NZVI-cement slurries and minimal adsorbed U was desorbed by a bicarbonate/carbonate (CARB) solution. Surface analysis using scanning electron microscopy and X-ray photoelectron spectroscopy revealed U distributed homogeneously on the surface of the NZVI-cement and transformed considerably from U(VI) to reduced U species by coupled oxidation of Fe(0)/Fe(II) to Fe(III). Furthermore, the increase in pH and NZVI concentration, and presence of humic acid resulted in the enhanced U(VI) reduction in NZVI-cement slurries. The NZVI-cement system was tested with a soil matrix, resulting in successful immobilization of aqueous U(VI) in both batch and column experiments. Moreover, the U(VI) removed in the NZVI-cement system was not leached out by the CARB solution during long-term experiments. The results suggest an NZVI-cement system could represent a promising remediation alternative for effective and stable immobilization of U(VI) in contaminated sites.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call