Abstract
The preparation of biocatalysts based on immobilized trypsin is of great importance for proteomic research, industrial applications and organic synthesis. Here in, we have developed a facile method to immobilize trypsin on magnetic nanoparticles. Fe3O4 nanoparticles were synthesized by co-precipitating Fe2+and Fe3+in an ammonia solution and then coated by silicon dioxides were developed by sol-gel method. The silica-coated Fe3O4 nanoparticles were further modified with 3-aminopropyltriethoxysilane, resulting in attaching of primary amine groups on the surface of the particles. Trypsin from porcine pancrease was then immobilized on the magnetic core-shell particles by using glutaraldehyde as a cross-linker. The synthesis steps and characterizations of immobilized trypsin were examined by FT-IR, XRD, TGA, EDX and SEM. The results showed that the enzyme immobilization increased the enzyme activity in different pHs and temperatures, without any changes in the optimum pH and temperature for enzyme activity. The Kinetic results showed that the enzyme immobilization decreased and increased Vmax and Km values, respectively. The stability results showed that the enzyme immobilization improved trypsin thermostability in the absence and presence of 10% (v/v) of the used solvents (DMF, THF, DMSO, ACN and 1, 4-Dioxane). The reusability results indicated that the immobilized enzyme maintained 85% of its activity after 6 periods of activity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.