Abstract

In this work, a novel and facile route was developed for the immobilization of enzyme on nanosized magnetic particles, and its application to fast protein digestion via a direct MALDI-TOF mass spectrometry analysis was demonstrated. At first, amine-functionalized magnetic particles with high magnetic responsivity and excellent dispersibility were prepared through a facile one-pot strategy. Then, magnetic nanoparticles were functionalized with numerous aldehyde(-CHO) groups by treating the as-synthesized, amine-functionalized magnetic nanoparticles with glutaraldehyde. Finally, immobilization of trypsin onto the aldehyde-functionalized magnetic nanoparticles was achieved through reaction of the aldehyde groups with amine groups of trypsin. The obtained trypsin-immobilized magnetic nanoparticles were conveniently applied for protein digestion. The digestion efficiency was demonstrated with peptide mapping analysis of three model proteins. The process of digestion is very facile due to the easy manipulation of magnetic nanoparticles. Complete protein digestion was achieved in a short time (5 min), without any complicated reduction and alkylation procedures. These results are expected to open up a new possibility for the proteolysis analysis as well as a new application of magnetic nanoparticles. Additionally, it is worth noting that, since the preparation and surface functionality of magnetic nanoparticles is low-cost and reproducible, the preparation method and application approach of the magnetic nanoparticles may find much potential in proteome research.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.