Abstract

In this report, trypsin was immobilized on silica-coated fiberglass core in microchip to form a core-changeable bioreactor for highly efficient proteolysis. To prepare the fiber core, a layer of organic–inorganic hybrid silica coating was prepared on the surface of a piece of glass fiber by a sol–gel method with tetraethoxysilane (TEOS) and 3-aminopropyltriethoxysilane (APTES) as precursors. Subsequently, trypsin was immobilized on the coating with the aid of glutaraldehyde. Prior to use, the enzyme-immobilized fiber was inserted into the channel of a microchip to form an in-channel fiber bioreactor. The novel bioreactor can be regenerated by changing its fiber core. The scanning electron microscopy images of the cross-section of a trypsin-immobilized fiber indicated that a layer of ∼1 μm thick film formed on the glass substrate. The feasibility and performance of the unique bioreactor were demonstrated by the tryptic digestion of bovine serum albumin (BSA) and cytochrome c (Cyt- c) and the digestion time was significantly reduced to less than 10 s. The digests were identified by MALDI-TOF MS with sequence coverages of 45% (BSA) and 77% (Cyt- c) that were comparable to those obtained by 12-h conventional in-solution tryptic digestion. The fiber-based microchip bioreactor provides a promising platform for the high-throughput protein identification.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.