Abstract

Tobacco etch virus (TEV) protease is widely used for the removal of poly-histidine affinity tags from proteins. In solution, it is a one-time use enzyme for tag cleavage that has low stability, and is therefore a good candidate for immobilization. Amyloid fibrils can act as a versatile nanoscaffold by providing a large surface area for biomolecule immobilization. Immobilization of TEV protease to amyloid fibrils grown from the surface of a small glass bead, using physisorption, successfully immobilized active TEV protease. The bead retained activity over several uses and successfully cleaved a poly-histidine tag from several his-tagged proteins. This is first time that TEV protease has been immobilized to insulin amyloid fibrils, or any protein based support. Such functionalized surface assembled amyloid fibrils show promise as a novel nanosupport for the creation of functional bionanomaterials, for example, active surface coatings for the production of fine chemicals, chemical detoxification, or biosensing. Insulin amyloid fibrils provide a new nanosupport for the immobilization of TEV protease, which could allow for the reuse of the enzyme, saving on production costs for recombinantly expressed poly-histidine tagged proteins. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 34:1506-1512, 2018.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.