Abstract

PET fabric was first modified with silane coupling agent KH-560, and then was loaded with a layer of nano-scaled TiO2 particles using tetrabutyl titanate as precursor by low temperature hydrothermal method, followed by dyeing with Disperse Blue 56. The morphology, crystalline phase, chemical modification, thermal stability and optical property of PET fiber before and after treatments were studied by scanning electron microscope, X-ray diffraction, X-ray photoelectron spectroscopy, thermal gravimetric and diffuse reflectance spectrum techniques. The properties of tensile, air permeability, luster, ultraviolet (UV) protection, photocatalytic activity, K/S value and color fastness were also measured. It was found that compared with the TiO2-coated fabric without modification with KH-560, the loading of TiO2 nanoparticles on the surface of the TiO2-coated fabric modified with KH-560 was obviously improved. The pure anatase TiO2 nanoparticle was grafted onto the fiber surface. The onset decomposition temperature increased. The absorbing capability to ultraviolet radiation was enhanced. The properties of tensile, air permeability, luster, K/S value and color fastness changed slightly. The UV protection ability and photodegradation of methyl orange under UV illumination were enhanced to some extent.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.