Abstract

Hydrogels have excellent properties that make them ideally suited as host matrices for the immobilization of photoreactive materials such as TiO2 nanoparticles that serve as catalysts in the photodegradation of organic dyes, which is of great importance in practical water pollution treatment applications. However, the application of hydrogels for this purpose remains poorly studied. The present study addresses this issue by developing two types of hydrogels based on poly(methyl acrylate) and succinamide acid with embedded TiO2 nanoparticles for use as photocatalysts in the photodegradation of organic dyes. The results of the analysis demonstrate that the TiO2 nanoparticles are distributed uniformly in the hydrogel matrices, and the hydrogels maintain their original structures after use. The photodegradation efficiencies of the developed TiO2-hydrogels are demonstrated to be reasonably close to that of freely distributed TiO2 nanoparticles in solution for four different organic dyes. In addition, the results of degradation-regeneration cycling tests demonstrate that immobilizing the TiO2 nanoparticles into the hydrogels greatly reduces their loss during utilization, and the photocatalysts can be easily reused. In fact, the two TiO2-hydrogels retain reasonably high photocatalytic degradation performance after four degradation-regeneration cycles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.