Abstract

Thermophilic lipase QLM from Alcaligenes sp. was successfully immobilized in Cu3(PO4)2-based inorganic hybrid nanoflower through biomimetic mineralization. The morphology, structure and element composition of immobilized enzyme were systemically characterized to elucidate the successful loading of enzyme molecules. The optimal temperature (65 °C) and pH (8.0) of immobilized enzyme were then determined by monitoring the hydrolysis of p-nitrophenyl caprylate. Moreover, compared with free enzyme, immobilized enzyme in inorganic hybrid nanoflower exhibited enhanced stability against thermal, pH and metal ions, attributing to the protective effect of nanoflower shell. Additionally, the immobilized enzyme possessed excellent reusability and long-term storage stability, with slightly decreased activity after being repeatedly used for 8 cycles or stored in water at room temperature for 4 weeks. Overall, the immobilization in inorganic hybrid nanoflower provided a facile and effective approach for the preparation of immobilized enzymes with favorable activity, stability and reusability, and thus the strategy showed great potential in developing ideal catalysts for future biocatalytic applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.