Abstract

Two trifunctional (trimethoxy and triethoxy) and one difunctional (methyldimethoxy) 3-mercaptopropyl-alkoxysilanes were covalently tethered to thiolated DNA oligonucleotides in solution. After deposition as microarrays onto glass, the immobilized DNA probes were tested for hybridization ability by a florescence-based method. The results demonstrate a large enhancement in the fluorescence signal when the functionality of the silane tether is reduced from three to two. An XPS analyses revealed that this is not due to a higher DNA surface density. FTIR spectra of the spin-coated silanes showed that the trifunctional silanes form branched and cyclic siloxane moieties, whereas the difunctional silane generates predominantly short straight siloxane chains. Therefore, the propensity of trifunctional silanes to form more complex networks leads to conformations of the bound DNA which are less favorable for the specific interaction with the complementary strand. The data implicate that further significant improvements in the DNA hybridization ability are possible by adroit choice of the silane system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.