Abstract

Aflatoxin B1 is a highly carcinogenic and teratogenic substance mainly produced by toxin-producing strains such as Aspergillus flavus and Aspergillus parasitic. The efficient decomposition of aflatoxin is an important means to reduce its harm to humans and livestock. In this study, Trametes versicolor aflatoxin B1-degrading enzyme (TV-AFB1D) was recombinantly expressed in Bacillus subtilis (B. subtilis) 168. MMT-CTAB-AFB1D complex was prepared by the immobilization of TV-AFB1D and montmorillonite (MMT) by cross-linking glutaraldehyde. The results indicated that TV-AFB1D could recombinantly express in engineered B. subtilis 168 with a size of approximately 77kDa. The immobilization efficiency of MMT-CTAB-AFB1D reached 98.63% when the concentration of glutaraldehyde was 5% (v/v). The relative activity of TV-AFB1D decreased to 72.36% after reusing for 10 times. The content of AFB1 in MMT-CTAB-AFB1D-AFB1 decreased to 1.1µg/g from the initial 5.6µg/g after incubation at 50°C for 6h. The amount of 80.4% AFB1 in the MMT-CTAB-AFB1D-AFB1 complex was degraded by in situ catalytic degradation. Thus, the strategy of combining adsorption and in situ degradation could effectively reduce the content of AFB1 residue in the MMT-CTAB-AFB1D complex.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call