Abstract

Strategies for the encapsulation of cells for the design of cell-based sensors require efficient immobilization procedures while preserving biological activity of the reporter cells. Here, we introduce an immobilization technique that relies upon the symbiotic relationship between two bacterial strains: cellulose-producing Gluconacetobacter xylinus cells; and recombinant Escherichia coli cells harboring recombinase-based dual-color synthetic riboswitch (RS), as a model for cell-based sensor. Following sequential coculturing of recombinant cells in the cellulose matrix, final immobilization of E. coli cells was completed after reconstituted silk fibroin (SF) protein was added to a "living membrane" generating the composite bacterial cellulose-silk fibroin (BC-SF) scaffold. By controlling incubation parameters for both types of cells, as well as the conformations in SF secondary structure, a variety of robust composite scaffolds were prepared ranging from opaque to transparent. The properties of the scaffolds were compared in terms of porosity, water capacity, distribution of recombinant cells within the scaffolds matrix, onset of cells activation, and ability to protect recombinant function of cells against UV irradiation. The closer-fitted microstructure of transparent BC-SF scaffolds resulted in leakage-free encapsulation of recombinant cells with preserved RS function because of a combination of several parameters that closely matched properties of a biofilm environment. Along with proper elasticity, fine porosity, capacity to retain the water, and ability of SF to absorb UV light, the composite hydrogel material provided necessary conditions to form confined cell colonies that modified cell metabolism and enhanced cell resilience to the stresses induced by encapsulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.